If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+6x-765=0
a = 1; b = 6; c = -765;
Δ = b2-4ac
Δ = 62-4·1·(-765)
Δ = 3096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3096}=\sqrt{36*86}=\sqrt{36}*\sqrt{86}=6\sqrt{86}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{86}}{2*1}=\frac{-6-6\sqrt{86}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{86}}{2*1}=\frac{-6+6\sqrt{86}}{2} $
| 6(x+8)=-386 | | 180=5x-11+6x-18 | | (4(3x-4)=2(6-x) | | 4^x+1=1/8^-2x | | x(x+8)=6x-3 | | |-9n-9|=36 | | -17x^2-25=0 | | C=20x+1600 | | 4^x+1=1/8^2x | | 5b+1=b+25 | | 100-a=80 | | 17y=~38 | | -3h/8=9 | | 4P=81*x-29970 | | 15y=y | | 7m-3m-5=6 | | 0,7/5=x/10 | | y-56=43 | | y-56=56 | | 16^5x=15^(-x-5) | | 2x-16=5x÷19 | | 2∟n-n∟5=n∟20 | | 2-3/2-3=m | | 2/n-n/5=n/20 | | (x+7)=144 | | 3.5+(1+4)x=(6.5+1.5) | | 1.807=0.016(x)^2+0.124(x)+0.787 | | x+7=144 | | 2(x–1)+2(3x-1)=0 | | 3(h-11)=14h | | 3x+30=50-X | | 2(a-8)=-24 |